Modelos de analítica predictiva para la gestión del rendimiento académico en estudiantes de posgrado en modalidad virtual

Autores

DOI:

https://doi.org/10.5281/zenodo.18274074

Palavras-chave:

aprendizaje automático, educación superior digital, deserción académica, educación en línea, tecnología educativa, intervención pedagógica, minería de datos

Resumo

Evaluar la eficacia de los modelos de analítica predictiva en la identificar factores vinculados al rendimiento académico en alumnos de maestría virtual de universidades privadas de Lima Metropolitana. El estudio efectuó un enfoque de tipo cuantitativo, de diseño correlacional-predictivo. Teniendo por muestra de 120 alumnos de programas de posgrado de manera virtual en universidades privadas en el período académico 2024-2025. Asimismo, para valorar la relación de las variables académicas, sociodemográficas y modelos de cooperación en plataformas digitales se efectuaron técnicas de regresión logística y árboles de decisión. El instrumento usado se consiguió a través de cuestionarios organizados y validados por análisis sistemático de registros institucionales. El modelo de analítica predictiva efectuado alcanzó una precisión 79.2% de precisión en la clasificación interna, lo que sugiere viabilidad técnica en este contexto. Las variables que mostraron mayor nivel de significancia estadística fueron: tiempo dedicado al estudio semanal (β=0.49, p<0.01), participación activa en actividades simultáneas (β=0.56, p<0.01), y experiencia previa en modelos de educación virtual (β=0.45, p<0.05). La implementación táctica de modelos predictivos consiente a las instituciones diseñar e implementar intervenciones formativas focalizadas y oportunas.

Downloads

Não há dados estatísticos.

Referências

Akgun, S., & Greenhouse, J. B. (2022). Predictive analytics in education: A comparison of machine learning algorithms for student success. Journal of Educational Data Mining, Journal of Educational Data Mining. 14(1), 1-25. https://doi.org/10.5281/jedm.v14i1.567

Aljohani, N. R., Fayoumi, A., & Hassan, S. U. (2019). Predicting at-risk students using clickstream data in the virtual learning environment. Sustainability. Sustainability, 11(24), 7238. https://doi.org/10.3390/su11247238

Baber, H. (2021). Social interaction and effectiveness of the online learning: A moderating role of maintaining social distance during the pandemic COVID-19. Asian Education and Development Studies. Asian Education and Development Studies, 11(1), 159-171. https://doi.org/10.1108/AEDS-09-2020-0209

Bañeres, D., Rodríguez-Gonzalez, M. E., & Serra, M. (2020 An early feedback prediction system for learners at-risk within a first-year higher education course. IEEE Transactions on Learning Technologies, 12(2), 249-263. https://doi.org/10.1109/TLT.2019.2912167

Broadbent, J., Fuller-Tyszkiewicz, M., & Skladzien, E. (2020). The use of learning management system data to predict online learning engagement and academic performance: A systematic review. Educational Technology Research and Development, 68(5), 2823-2849. https://doi.org/10.1007/s11423-020-09795-w

Broadbent, J., & Poon, W. L. (2015). Self-regulated learning strategies and academic achievement in online higher education learning environments: A systematic review. The Internet and Higher Education, 27, 1-13. https://doi.org/10.1016/j.iheduc.2015.04.007

Cabero-Almenara, J., & Valencia-Ortiz, R. (2021). Y el COVID-19 transformó al sistema educativo: reflexiones y experiencias por aprender. International Journal of Educational Research and Innovation, 15, 218-228. https://doi.org/10.46661/ijeri.5246

Fernández-Pascual, M. D., Ferrer-Cascales, R., & Reig-Ferrer, A. (2021). Learning analytics para la predicción del rendimiento académico de los estudiantes en modalidad a distancia. Revista de Educación a Distancia, 21(65), 1-22. https://doi.org/10.6018/red.456211

Ferreira, M., Cardoso, A. P., & Abrantes, J. L. (2021). Motivation and relationship of the student with the school as factors involved in the perceived learning. Procedia - Social and Behavioral Sciences and Behavioral Sciences, 29, 1707-1714. https://doi.org/10.1016/j.sbspro.2021.07.089

García-Chitiva, M. P., & Suárez-Guerrero, C. (2019). Estado de la competencia digital docente en Latinoamérica. Revista de Comunicación, 18(2), 73-89. https://doi.org/10.26441/RC18.2-2019-A4

García-Peñalvo, F. J., Corell, A., Abella-García, V., & Grande-de-Prado, M. (2021). Recommendations for mandatory online assessment in higher education during the COVID-19 pandemic. Lecture Notes in Computer Science, 12749, 70-87. https://doi.org/10.1007/978-3-030-78270-2_5

Gonzalez-Ramirez, J., Mulqueen, K., Zealand, R., Silverstein, S., Mulqueen, C., & BuShell, S. (2022). Emergency online learning: College students' perceptions during the COVID-19 pandemic. College Student Journal, 56(1), 29-46.

Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: A systematic literature review. Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, 175-199. https://doi.org/10.1145/3293881.3295783

Henderikx, M. A., Kreijns, K., & Kalz, M. (2019). To change or not to change? That's the question: On MOOC-success, barriers and their implications. Australasian Journal of Educational Technology, 35(3), 1-16. https://doi.org/10.14742/ajet.3942

Huang, X., Chandra, A., DePaolo, C. A., Cribbs, J., & Simmons, L. L. (2020). Measuring transactional distance in web-based learning environments: An initial instrument development. Open Learning: The Journal of Open, Distance and e-Learning, 35(3), 257-271. https://doi.org/10.1080/02680513.2015.1128366

Hussain, M., Zhu, W., Zhang, W., & Abidi, S. M. R. (2021). Student engagement predictions in an e-learning system and their impact on student course assessment scores. Computational Intelligence and Neuroscience, 2021, Article 6347792. https://doi.org/10.1155/2021/6347792

Ifenthaler, D., & Schumacher, C. (2020). Student perceptions of privacy principles for learning analytics. Educational Technology Research and Development, 64(5), 923-938. https://doi.org/10.1007/s11423-016-9477-y

Ifenthaler, D., & Yau, J. Y. K. (2020). Utilising learning analytics to support study success in higher education: A systematic review. Educational Technology Research and Development, 68(4), 1961-1990. https://doi.org/10.1007/s11423-020-09788-z

Martin, F., Ritzhaupt, A., Kumar, S., & Budhrani, K. (2022). Award-winning faculty online teaching practices: Course design, assessment and evaluation, and facilitation. The Internet and Higher Education, 42, 100793. https://doi.org/10.1016/j.iheduc.2019.100793

Muljana, P. S., & Luo, T. (2019). Factors contributing to student retention in online learning and recommended strategies for improvement: A systematic literature review. Journal of Information Technology Education: Research, 18, 19-57. https://doi.org/10.28945/4182

Nuankaew, P., Nuankaew, W., Teeraputon, D., Phanniphong, K., & Bussaman, S. (2019). Prediction model of student achievement in massive open online courses. International Journal of Emerging Technologies in Learning, 14(18), 160-175. https://doi.org/10.3991/ijet.v14i18.10853

Pérez-López, E., Atochero, A. V., & Rivero, S. C. (2021). Educación a distancia en tiempos de COVID-19: Análisis desde la perspectiva de los estudiantes universitarios. RIED. Revista Iberoamericana de Educación a Distancia, 24(1), 331-350. https://doi.org/10.5944/ried.24.1.27855

Ramos-de-Robles, S. L., Arán-Jansen, P., & Ortega-Medellín, E. M. (2021). Variables asociadas al éxito académico en estudiantes de posgrado en línea. Revista Electrónica de Investigación Educativa, 23, e14. https://doi.org/10.24320/redie.2021.23.e14.3594

Rastrollo-Guerrero, J. L., Gómez-Pulido, J. A., & Durán-Domínguez, A. (2020). Analyzing and predicting students' performance by means of machine learning: A review. Applied Sciences, 10(3), 1042. https://doi.org/10.3390/app10031042

Rodríguez-Abitia, G., & Bribiesca-Correa, G. (2021). Assessing digital transformation in universities. Future Internet, 13(2), 52. https://doi.org/10.3390/fi13020052

Stone, C., & O'Shea, S. (2019). Older, online and first: Recommendations for retention and success. Australasian Journal of Educational Technology, 35(1), 57-69. https://doi.org/10.14742/ajet.3913

Tsai, Y. S., Rates, D., Moreno-Marcos, P. M., Muñoz-Merino, P. J., Jivet, I., Scheffel, M., Drachsler, H., Kloos, C. D., & Gašević, D. (2020). Learning analytics in European higher education: Trends and barriers. Computers & Education, 155, 103933. https://doi.org/10.1016/j.compedu.2020.103933

Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). Predictive analytics in education: A comparison of machine learning algorithms for student success. Journal of Educational Data Mining. Computers in Human Behavior, 89, 98-110. https://doi.org/10.1016/j.chb.2018.07.027

Waheed, H., Hassan, S. U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicción del rendimiento académico de los estudiantes a partir de los macrodatos de entornos virtuales de aprendizaje mediante modelos de aprendizaje. Computers in Human Behavior, 104, 106189. https://doi.org/10.1016/j.chb.2019.106189

Wong, J., Baars, M., Davis, D., Van Der Zee, T., Houben, G. J., & Paas, F. (2019). Supporting self-regulated learning in online learning environments and MOOCs: A systematic review. International Journal of Human-Computer Interaction, 35(4-5), 356-373. https://doi.org/10.1080/10447318.2018.1543084

Yağcı, M. (2022). Educational data mining: Prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 11. https://doi.org/10.1186/s40561-022-00192-z

Zambrano, J., Kirschner, F., Sweller, J., & Kirschner, P. A. (2021). Effects of group experience and information distribution on collaborative learning. Instructional Science, 47(5), 531-550. https://doi.org/10.1007/s11251-019-09495-0

Publicado

2025-12-31

Como Citar

Saenz Arenas, E. R. (2025). Modelos de analítica predictiva para la gestión del rendimiento académico en estudiantes de posgrado en modalidad virtual. Revista Arbitrada De Educación Contemporánea, 2(2), 85–105. https://doi.org/10.5281/zenodo.18274074

Artigos Semelhantes

1 2 3 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.